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SUMMARY

In this chapter we analyze the interaction between model simplification
and strategy design in a multimodel context and for multiple agent stochastic
decision problems with decentralized information. Under quasi-classical
information patterns, and using singular perturbations approach, we establish

asymptotic optimality of different multimodels which involve continuous and

two types of sampled measurements. Qur general analysis and discussion serve
to enhance our understanding of the interrelationships between structual

features of stochastic large scale systems, like time-scales and weak coupling,

e B b

and strategy design.
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1. INTRODUCTION

'i The problem of efficient management and control of large scale
N systems has been extremely challenging to control engineers. There are
essentially two main issues of concern: the modeling issue is complicated
.' due to the large dimension of the system, and the control design issue is
complicated due to the presence of multiple decision makers having possibly
- different goals and possessing decentralized information. Efforts to under-
- stand the inherent complexities have led to the concept of nonclassical
information patterns {l]. This concept expresses a basic fact that a decision
maker has neither complete nor instantaneous access to other decision makers'
measurements and decisions. A related but perhaps more basic fact is
~ expressed by the multimodeling concept {2]. This concept accounts for the

many realistic situations when different decision makers have different infor-

."' M

mation about the system structure and dynamics and therefore use different

B
vt

simplified models of the same large scale system. These models may differ in

parameter values, signal uncertainties, and, more critically, in their basic

g

structural properties.
A strong motivation for the multimodeling approach is found in

multi-area power systems. The decision maker in one area uses a detailed

F% model of his area only and some lower order "equivalent" of the rest of the
. system. The decision makers in other areas behave in a similar way and as

h a result each has his own view of the same large scale system. The main

- advantage of such an empirical decomposition is that it leads to distributed
- computations and less communication between the controllers because each

;: decision maker would only require measurements of the variables appearing in

his own reduced order model. Many crucial problems (instability, suboptimality,
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etc.) arise because the strategies designed with such inconsistent ﬁodels are
then applied to the actual system.

We investigate, in this chapter, the effect of multimodeling incon-
sistencies on the design and implementation of multicontroller strategies
under certain quasi-classical information patterns. The approach taken is
perturbational. If the model inconsistencies are small, it is natural to
expect that their effect on the designed strategies and on thé actual system
performance would be in some sense small. If this were not the case, the
designed strategies would not be applicable to realistic systems whose models
are never exactly known. We consider this low sensitivity property a
sine qua non condition for any control design and, in particular, for the
design of large scale systems controlled from multiple control stations.

Another fundamental property of our perturbational approach is that
it concentrates on modeling errors caused by reducing the model order. Such
order reductions are achieved by separating the time scales, that is, by
considering slow and fast phenomena separately. A typical situation is when
the decision maker in one area neglects the fast phenomena in all other areas.
In geographically dispersed systems this practice is based on the experimental
observation that faster phenomena propagate to shorter distances than the
slower phenomena. For example, in a multimachine transient the slower
oscillatory modes are observed throughout the system, while faster inter-
machine oscillations are of a more local character [3].

A tool for analyzing the change in model order is the so-called
singular perturbation method which converts the change of model order into a
small parameter perturbation [4]. This parameter multiplies the derivatives

of the fast state variables and when it is set to zero the fast phenomena are

.
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neglected. The fast phenomena are treated separately in the fast time scale

where the slow variables are "frozen" at their quasi-steady state values.

This two-time-scale approach is asymptotic, that is, exact in the limit as

the ratio of speeds of the slow versus the fast dynamics tends to zero. When
o this ratio is small, approximations are obtained from reduced order models in
~ ' separate time scales. This way the singular perturbation approach alleviates

difficulties due to high dimensionality and ill-conditioning resulting from

f’ the interaction of slow and fast dynamic modes.
The chapter is organized as follows: In Section 2, we study the
o fundamental problem of modeling and control of singularly perturbed systems

s driven by Wiener processes under various cases of continuous and sampled

observations. An extension of the single parameter model, which realistically

captures the multimodeling situation, is formulated in Section 3 using multi-

parameter singular perturbations. In Section 4, we obtain multimodel solutions

to Nash and team problems under certain quasi-classical information patterns,

!! and establish their relationship with the solutions of the full problem. We

) summarize the results with some concluding remarks in Sectfon 5.

i% To highlight the ideas, we have adopted an informal style for the
presentation and discussion of the main results. More rigorous treatment can

. be found in quoted references.
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2. MODELING AND CONTROL OF STOCHASTIC SINGULARLY PERTURBED SYSTEMS

Al

2.1. Well-Posedness of Different Models

A d

The optimal control of stochastic singularly perturbed systems with

white noise inputs leads to difficulties not present in deterministic problems.
This is due to the idealized behavior of white noise which "fluctuates" faster
than the fast dynamic variables. To illustrate the problem of optimally
controlling a stochastic fast dynamic system, consider the following standard

LQG formulation

system dynamics: edz = Az dt + Bu dt + Gdw (2.1a)

measurement process: dy = Czdt+ dv (2.1b)
. T

cost function: J = E{z'in—f (z'Qz+u'u)dt}. (2.2)
0

Here, £ >0 is the small singular perturbation parameter; w(t) and v(t) are 1
standard Wiener processes independent of each other, and all matrices are
time-invariant, with I' >0, Q2> 0. We will further assume that A is a stable !

matrix, that is, Rel(A) < 0.

aniati

The optimal control u* which minimizes the cost J is obtained in

the usual manner by applying the separation principle, so that

u® = -B'Kz (2.3)

whe_e K satisfies the Riccati equation

€K = -A'K - KA - Q + KBB'K; K(T) = é r. (2.4)

_—— P POy e

The vector %(t) denotes the optimal estimate of z(t) given the past observationms,

which for any given u(t) is the output of the Kalman filter 1




gdz = Az dt + Budt + PC'(dy-C2 dt); z(0) = E[z(0)] (2.5)

1 .
where E-P(t) is the error covariance of z(t), satisfying

eP = AP + PA' + G3' - PC'CP; P(0) = ¢ Cov(z(0)), (2.6)

which does not depend on u(t). The resulting minimum value of the cost, J*,
is given by
T

I* = ¢2' (0)K(0)2(0) +% er[P(T)T] + -el-f tr[CPKRC' +PQ]dt. 2.7
0

Notice from (2.6) and (2.7) that Cov(z-2z) =0(-;—) and J*=O(%). Hence as ¢+ 0,
both the covariance of the estimation error and optimal cost diverge, even
though the feedback gain of the optimal control law given by (2.3) remains
finite (outside the end-point boundary-layer). This is because, in the limit
as €+ 0, the fast variables z themselves tend to white noise processes, thus
losing their significance as physically meaningful dynamic variables. Hence
the problem formulation given by (2.1) and (2.2) is ill-posed. More detailed
analysis of this formulation in the filtering and control context may be
found in [5,6].

One way to circumvent the difficulty encountered above is to appro-
priately "scale'" the white noise terms in the model. Let us now investigate
ramifications of the following more general formulation:

The state dynamics description is replaced by
edz = Azdt + Budt + e:ade; ter(a) <0 (2.8a)
and the measurement process is

dy = Czdt + esdv (2.8b)
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where o,B are some positive constants to be chosen. The cost function J is

the same as before.

Now the optimal control is given by
u* = -B'K3

where K(t) satisfies (2.4).

The optimal estimate z(t) is obtained from the Kalman filter

edz = Az dt + Budt + M(t) (dy-Cz dt); 2(0) =E[2(0)]

where M(t) is the filter gain given as

1-28

M(t) = ¢ PC'

and P(t) is the error covariance of z(t), satisfying

20-1 1-28

€P = AP+PA'+¢ GG' -¢ PC'CP; P(0) = Cov(z(0)).

The minimum value of the cost, J*, is given by

T T
J* = 2" (0)K(0)2(0) + tr (B(T)T) + 728 tr(cPrRC)de + [ tr(PQ)dr.
0 0

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

Let us now examine the behavior of P(t), M(t), and J* for various values of

a and 8, in the limit as €+ 0. The limiting behavior of P(t) and J* is

governed primarily by the parameter a, while the limiting behavior of M(t)

is governed by both parameters o and 8. Notice that the behavior of K(t) is

unatfected by the scaling.

A straightforward examination of (2.12) reveals that for a<%, P(t)

diverges as ¢ ~0, which implies from (2.13) that J* also diverges as e ~0.

[Note that 8 >0 by hypothesis.] When P(t) diverges, the filter gain M(t) may

or may not diverge as ¢ ~ 0, depending on the value of 6. If 8>3, however,
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in addition to O<a <%, M(t) always diverges as ¢ 0. This particular case
(e <%, B>%) corresponds to the situation where the observations become noise-
free in the limit as €+ 0, and therefore the filter gain becomes unbounded.

When o >3 and R is any positive constant, it readily follows from
(2.12) and (2.13) that P(t) and J* go to zero as e~0. If at the same time
B <, then M(t) also goes to zero as € +0. This case (a >, B<%) corresponds
to the situation when the observations become too noisy in the limit as
€ >0, thus driving the filter gain to zero.

Hence the range of scaling (a,B>0; a#%, B#%) leads to ill-posed
formulations. This implies that it is not possible to give a physically
meaningful interpretation to the limiting solution. [Of course for any fixed
€ >0, the problem is well-defined.] The only meaningful formulation is obtained
when a=8=%. 1In this case P(t), M(t), and J* remain bounded and nonzero and
yield a well-defined stochastic control problem in the limit as e~ 0.

The above analysis has indicated that in order to obtain a well-
defined stochastic control problem, the process and observation noise need to
be scaled in an appropriate manner. To gain further insight, let us directly

examine the limiting behavior of the stochastic process

edz = Az dt + /e Gdw; Rer(A) <0, GG'>0. (2.14)

Clearly, without the scaling term, z(t) converges to white noise in the limit
as ¢>0. If, with the above scaling, z(t) converges to something which is
physically meaningful, then this would provide a strong justification for

the model (2.8), with a=k,

Solving for z(t) from (2.14) we obtain

z(t) =




S~
~
.
-

8
where we have assumed, without loss of generality, that z(0) =0. Now
1t A(t-1) /¢ 1t A(t=-1) /¢
cov(z(t)) = E([-= [ A7 Faau(z ) 1= [ A Scauce 1)
e 0 /e 0
t - ' -
- i‘f eA(t r)/eGG,eA (t T)/edr
£
0
RGO (2.16)

where We(t) satisfies, for each € >0, the linear matrix differential equation

eW =AW + WA + GG'.
€ € €

Since ReX(A) <0, we clearly have the limit (excluding boundary layers)

lim Cov(z(t)) =W (2.17)
e>0

where W is the positive definite (because GG' > 0) solution of the Lyapunov

equation

AW + WA' + GG' = 0. (2.18)

This implies that z(t) converges in distribution to a zero mean constant
Gaussian random vector whose covariance W satisfies (2.18) [see also [7,8]].
The above convergence is indeed physically meaningful, and therefore we are
justified in using (2.14) to model a fast stochastic dynamic system.
Physically, the above analysis has indicated that in order to
meaningfully estimate and control a fast dynamic system, the influence of the

random disturbances has to be "limited" in some sense.
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2.2, Singularly Perturbed Systems with Continuous Measurements

Let us now consider the full (with both slow and fast variables)

stochastic singularly perturbed optimal control problem

dx

(A11x+A z+Blu)dt + G,dw

12 1

8 a
edz (e A21x4-A2224-B2u)dt + ¢ szw

dy1 = (Cllx-Fclzz)dc + dv1

v v
dy2 (e Cle-Fczzz)dt + ¢ dv2

J = E{x'(T)le(T)-+2€x'(T)F122(T)-Fez'(T)Fzz(T)

T 26

+ f (x'L!L x-FZeax'L'L z+e z'L'L.z+u'u)dt}.

0 171 172 272

(2.19a)

(2.19b)

(2.20a)

(2.20b)

(2.21)

The parameters a, B, v, 8 represent the relative size of the small parameters

within the system, with respect to the small time constants of the fast

subsystem. The inclusion of a separate observation channel Yy for the fast

subsystem is essential, since otherwise for a > 0 the fast variables cannot be esti-
mated meaningfully from the slow observation channel (signal-to-noise ratio tends

to zero). The stochastic processes w(t), vl(t)

and vz(t) are standard

Wiener processes independent of each other and the Gaussian random vector

[x(0),z(0)]. We also assume that ReX(Azz) < 0. The optimal solution to the

problem posed by (2.19)-(2.21) can be obtained by invoking the separation

principle:

edz

(Allx +A

- ' tirt > ' ' 5
[(BlK1+B2K12)x+ (BZK2+EB K, .)z]

1712

122+Blu*)dt + [P,C]+ ea_\)PuCé]dc

(Ba. %+a £+32u*)dc+e°‘[ep' C'+ea_vP2Cé]do

21 22 1271

(2.22)

(2.23a)

(2.23b)




where the innovations process o(t) is defined by

d - r aor )
s 2|2 ‘h G2

_=V | =\ ; :

¢ W (S ¢ Caf?
dy x

1 -
I -1c,  ec,)l | de (2.24)

£ dyz Lz"

The control gain matrices satisfy

K = 8 ' Bat o1 "o ' ' oy .
K, = KjA| | +€ K oA, +A1 K} +e745 KlH +LiL) = (K By + KB (B1K) +B)K; )5
KI(T) = I‘l (2.25a)
R = ' Byt Sey  _ 1 ' .
EI_(IZ K1A12+K12A22+5A11K12+e Aj K, t+e LiL, (K12B2+K181)(BZK2+eBlK12),
KlZ(T) = r12 (2.25b)
y 28
- = ' ' t 1 - 1 t ] .
us K2A22 + A22K2 + €K12A12 + €A12K12 +¢c L2L2 (KZBZ + eKlzBl) (BZKZ + eBlKlz) ;
KZ(T) = I‘2. (2.25¢)
The filter covariances satisfy
> = ' a ' a ' "_ 1y OV ' a=v '
P1 A11P1+P1A11+e A12P12+e P12A12+G1G1 (P1C1+e PIZCZ)(C1P1+E C2P12)
Pl(O) = Cov(x(0)) (2.26a)
5 = o 1,.B- ' ' R Y '
cB , = €A P e A P, A e °’1>1A21+Glc2 (P, Ci+e" P ,C0) (C1P

+e°""c2P2); P12(0)=e°‘Cov(x(0),z(0)) (2.26b)

l-a+8 l-a+B, ' '_ ' 1y 0=V '
A21P12+e P12A21+G262 (eP12C1+e ch:z)(eclp12

L
2 A 2 ?_P 2+P 2A2 2+e

eP

+¥7VC,p); Ry (0) = 17200 0u(2(0)).  (2.26¢)
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The performance

Hencve, we require that

(2.28)

in order to have a finite coust. Furthermore, i weli-defined tormulation also

requires that
0<a=ovsd 2k, (2.29)

The restriction a=v is crucial, otherwise, either the fast variables are not
observed due to very noisy observations (a >v), or they are observed noiselessly
(ax <v) in the limit as ¢ +0. 1If a>%, the problem becomes deterministic as
€0, and if B>, the coupling between x and z becomes negligible. The
constraint B8 >a insures that the state z is predominantly fast, and relaxing it
causes no conceptual difficulties.

Note that when a=8=v=0, it is required that §=% to yield a
finite cost. In this case the fast variables are of no interest as far as
the control is concerned, and serve only as a model for a wide-band disturbance
to the slow variables. The important case is when a= v =% and §=3=0, since
this results in a full weighting of the fast variable. For this problem, it

can be shown that [9],

- -l ] [] P
u = Ro (NOLO-G-BOKO)Xs

o = il t [} -1 - o 1 -1
dxs (onS+Bous)dt+(POCO+G0D°)VO [dy Coxsdt-kj;f CzAzszusdt]




>
Pl
o
K

‘s

f .

-f(o = K, (AO-BORSINO'LO) + (AO-BOR;IN;LO) 'K, + L;(I—NOR;INCL)LO
-KOBORSIBC')KO; R (1) =T (2.33)
éo = AOPO+P°A(;-(P0C(;+GODC'))V‘:1(COP°+D0G$) +6. G P_(0) =Cov(x(0)) (2.34)
A, %4, B8 B1'A12A;;32’ N, & -LZA;;BZ’ L, 4Ly, R, S NN
c_ ¢ Cl—CzA;;AZI, D4 -CZA;;GZ, ¢, 46, v £ 1+D D! (2.35)
up = -Béﬁzif (2.36)
edif = (A222f+32uf)dt+§Zc§2{dy2~c22£fdc - E[CZI-CZZA;;AZI]iSdt
+C,,A Bu dt) (2.37)
i2A22+A5222+Lé z-iszaéﬁz =0 (2.38)
A, P, +P,A! +G,G!-P C!C.P 0. (2.39)

2272 T Eofga Thgby TR, =

Notice that ug and uc are obtained on solving a reduced-order slow control
problem and an infinite~time fast control problem, respectively. These problems
can be solved independently of each other, It is interesting to note that the
fast filter is driven by the slow variables as well. Hence the implementation
of the filters is not independent, but sequential in nature. The near-
optimality result (2.30) is valid only for t€ (0,T), because the boundary-

layer terms have been neglected.

2.3. Singularly Perturbed Systems with Sampled Measurements

So far we have examined the modeling and control aspects of

stochastic singularly perturbed systems when the measurement process is

.................................
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continuous in time. We shall now examine the same aspects when the measure-
ment process consists of discrete samples. Two types of sampled observations
will be considered. 1In the first case, sampled values of the state in addi-
tive noise are observed, and in the second case sampled values of a continuous-
time measurement process are observed. These types of observations play an
important role in multi-agent decision problems as we shall see later.

It is a well-known fact that the open-loop dynamics of any system of
the form (2.19) with a=%, B=0, can be transformed into a block-diagonal form
where the pure slow and fast variables are explicitly displayed [10]. Hence,
without loss of generality, we shall assume that the system to be controlled is

given by

dx = (A;x+Bu)dt + G dw. ' (2.40a)

1

edz = (A2z+32u)dc + /e G,dw; ReA(4,) <O. (2.40b)

4
The performance index will be given by

T
J = E{X(T)le(T)-+ez'(T)F2z(T)-+f (x'le-#z'sz-Fu'u)dt}. (2.41)
0

We now consider two cases of sampled observations

2.3.1. Case 1: Noisy measurements of sampled values of state

The observations consist of sampled noisy measurements of the state.

Specifically, the observations
y(@i) = CIX(tj) + sz(tj) + v(i) (2.42)

are available at sampled time instant tj where j=0,1,...,N-1 and

A more general formulation would include cross terms involving slow
and fast variables. Here we are avoiding this in order not to obscure the
essentials of the following analysis by notational complexity. We should note
though, that such a restriction leads to no conceptual loss of generality. ‘

- x
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0=to<t1 < oo <tN_1=T. Let 6={0,1,...,N=1}. Then the random vectors
{v(j)j€ 6} are assumed to have independent Gaussian statistics with
v(j)-»N(O,Rj), Rj>'0, j€ 6. Their statistics are also assumed to be indepen-
dent of the Wiener process w(t) and the Gaussian vector [x(0),z(0)].

A near-optimal solution to the problem defined by (2.40)-(2.42)

can be shown to be given by

u, = u_ + ug (2.43)
where
us(t) = -BiKlwl(t,tj)f:S(tj); t€[tj,tj+1), je o (2.44)
-1'(1 = AjK, +K/A; +Q, ~K/B BIK; Ky (T) =T, (2.45)
i/l(t,cj) = (&-B;BIR )Y, (£,,); ¥t =1

t€[tj,tj+1), jE 6 (2.46)

és(t) = A% _(t) +Bju_(t);  X,(0) =E[x(0)]
LELE, 15t)5  §=1,2,....8 (2.47)

- R . = -1 -
xs(tj) = xs(tj) +Sl(j)[y(j)—C1xS(tj) +C,A, Bzus(tj)]

. = [ [N
I, = AjZ_+IAI+GGI;  I_(0)=Cov[x(0)]

t€ [tj_l,tj); F=1,2,...,N (2.48)
zs(tj) = Es(tj) -Sl(j)clzs(tj)

- - -1
s - L L |+ 2.4
Sl(J) zs(tj)cl[clzs(tj)cl+c22fc2 Rj] (2.49)

o - 1 | = 2.
Azbf + LfAZ + G2G2 0 (2.50)

w

4




SS 15
- = [} ~ .
‘i uf(t) BZKZ‘YZ(t,tj)zf(tj), te [tj,tj+l), JE 8 (2.51)
AR +K,A -X B B'XK, =0 (2.52)

o 2%y T Koy +Qy = X5ByB2K,

e‘{’z(t,tj) = (Az-BzBéKz)wz(t,tj); ‘{’z(tj,tj) =1

te [tj,tj+1), je e (2.53)
~
ezf(t) = Azzf(t)-+32uf(t); zf(O) = E[2(0)]
rg
b te [tj-l’tj); j=1,2,...,N (2.54)
e - A . N D (TN D (e -1 -
b zf(tj) Zf(tj)+52(J)[Y(J) Clxs(tj) szf(tj)+CzA2 BZus(tj)]
I‘. - _1
. 2y = ' ' '
“:33 5,1 zfcz[clzs(cj)cl+czzfc2+Rj] . (2.55)
ii It u* is the optimal solution to the problem (2.40)-(2.42), then it can be
shown that
limu*=u0; 0<t<T
e+0
I (2.56)
S lim (J@W®)-J@ )) = 0. -
e>+0 o 4
e
” 2.3.2. Case 2: Sampled values of continuous noisy measurements f%
The measurement process is a continuous-time stochastic process f
described by :l5
- t
y(£) = [ [C x(s) +C,z(s)]ds + q(t) (2.57)
0
o where q(t) is a standard Wiener process independent of w(t) and the Gaussian
-

vector [x(0),z(0)].

...................................
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Let 0=t <t <-+e<t
o 1

ment process is not observed on the entire time interval [0,T], but only its

w1 <ty =T and 6={0,1,...,N-1}. The measure-

sampled values at time instants tl, tz,...,tN are observed. Therefore, the

only observation in the subinterval [tj,t ) is

§+1
%
?(tj) = (f) [CIX(S) + Cyz(s)]ds + q(tj) (2.58)

which is made at the beginning of that subinterval. 1In the time interval
[O,tl),no observations are made and only the prior statistics of the random
quantities are available.

Let

y(3) = y(e) -y, )

t.

]
—
(S

[Clx(s)-+sz(s)]ds + v(ji) (2.59)
j-1

where v(j)==q(tj)-q(tj_l) is a discrete-time Gaussian white noise process

with mean zero and variance Rj= (tj—tj_l)I. Clearly the sigma-algebras
generated by {;(ti),i=l,2,...,j} and {y(1) , i=1,2,...,j} are equivalent.

A near-optimal solution to the problem defined by (2.40), (2.41),

(2.59) can be obtained as follows:

ug = us+uf (2.60)
where
B - ' ” M i E -
us(t) BlKl\Pl(t,tj)xs(tj), te [tj,tj+l), j€e o (2.61)
r = Al - ' . =
-K1 A1K1+-K1A14-Q1 KlBlBlKl’ Kl(T) Fl (2.62)
v. - - t i . U - -
yl(t,tj) = (Al Bllel)vl(t’tj)’ fI(Ljytj) I
) j€ o (2.63)

4 U

-§il
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-.l'
-. Xs(t) = Alxs(t) +Blus(t); xS(O) = E[x(0)]
teft, .»t.); 3J=1,2,...,N
3173 (2.64)
'3
~ A — . . A -1
. R (t) = R D+ DIyW -] [€R (£)-CoA) Byu (r) 1dr]
" £y /
j
'[‘ . = ' r. =
" I AL +I A +GG; zS(O) Cov[x(0)] \
:-l te [tj-l’tj); i=1,24...,N
t
. - i ' ) (2.65)
N = 7 - 3
: Igle) = I (e s1(3>[{ Cpo (rat,_dr T (e, Doile,e, )
j-1
t, t.
: hi hi o o
+[ ¢ [ 44 (rsP)G 610 (¢t ,p)dpdr] ) g
t. r }
.
t. t.
. h i '
Ry =/ Cpogle,t,_pdp (e, [ e (e, Cjdr
t, t,
j-1 j=1
! t, t
¥ hi P
: +f Cl f ¢S(p,r)GLGi f ¢;(Z,r)cid2 dr dp
tj—l tj-l r
t, t,
J , J L '
"~ + f C2d>f\p,tj_1)dp Zf f ¢:f(r,tj_1)C2dr
[ t. t,
e j-1 j-1
t, t,
- h| P J,
+[ e, [ 4p(p.1)GG [e;(a,r)Codndrdp + R, (2.66)
t. t, r J
j=-1 j-1
v
: = - ' ' :~
$1(3) = Lo (eses DT (g ) { ¢e(r,t,_)Cidr
- 3=t o
t, t, 3
J J =1 c-d
+ [ e (t,p)G Gl [ 6!(r,p)Cldrdp] R (2.67) =
t, J P J -1
j-1 =
. ¥

l- o
i.‘.:
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0g(EsE) = A8 (6,85 o (tit) =1 3
t€ [tj’_tj”)’ i€ ® (2.68) ]
ed'>f(t,tj) = A2¢>f(t,tj); ¢f(tj,:j) =1 J
te [tj,tj+1), je 8 (2.69)
Azzf + ZfAé + GZGé =0 (2.70)
u (t) = -BéKZWZ(t,tj)if(tj); t€[tj,tj+1), jE 8 (2.71)
AJK, + KA, + Q) =K,B,BIK, = 0 (2.72)

". = - ' M =
c.‘Pz(t,tj) (A2 BszKz)wz(t,tj), wz(tj,tj) I

t€[tj,t jE 9 (2.73)

4107

eéf(t) = Azif(t)i-Bzuf(t); if(O) = E[z(0)]

-

te[tj_l,tj); j=1,2,...,N (2.74)
t
2 () +S, DIy - [ (€)% (04€,2(r)-C,A7 By (1) ]dr]

£

zf(tj)

t.
3
3 — \ ]
j-1
5
t ] s=1
¢>f(tj,p)G2G2 1{ ¢f(r,p)Cédrdp]Rj ) (2.75)
i-1

If u* is the optimal solution to the problem defined by (2.40), (2.41), (2.59),

then it can be shown that

Ve
.

) - o L e T e e P T S D [ o - t
P T U S UCTRATON S W SUP R, 1P, P U U L P L . WP, PRL L W . V. U O iy gl WY DR P W Vil W AP S O W,




[ a tn s Sl 2l Sl Su Sef Aol Saf Vel Mok Sud Was iafl sol aed Sugh dnld coll v ol ond vabog b el aad onl ce L anlotad tnlalbanh vyt b Ml S AR Sl Sl i S A

;{
o

1

Pl Vs
s

P

19

111(1)1u*=uo; 0<t<T
£

(2.76)
1lim(J(u*)=-J(u )) =0
e~>0 o

We should point out that the near-optimality of the composite control u, in
both cases 1 and 2 is valid only in the open interval (0,T) because the
boundary-layer terms have been neglected.

An important distinction between the above formulations involving
discrete observations and the earlier formulation involving continuous obser-
vations is that, in the discrete observations cases, there is no need to
scale the measurement noise and it is not necessary to have a separate obser-
vation channel for the fast variables. This is because the sampling interval
is fixed and independent of ¢, and hence there is no interaction between the
dynamics of the observation process and the input noise process.

Now that we understand the subtleties involved in the modeling and
control of stochastic singularly perturbed systems under various observation
patterns, the next step is to study multi-agent decision problems. But before
we do this, we shall introduce, in the next section, the important concept of
multimodeling of large scale systems within the framework of time-scales and
singular perturbations. This concept plays a crucial role in the near-optimal

design of multi-agent decision policies for stochastic singularly perturbed

systems.

‘w e e a2
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3. MULTIMODELING BY SINGULAR PERTURBATIONS

4.1

The need for model simplification with a reduction (or distribution)

of computational effort is particularly acute for large scale systems involving

hundreds or thousands of state variables, often at different geographical ;3
locations. Some form of decentralized modeling and control which exploits the
weak interactions between subsystems is then required. While there are a i
number of approaches to the study of large scale systems [l], the success of -
any proposed decentralized scheme critically depends upon the choice of suo-
systems [11]. vk
. -
1‘! A fundamental relationship between time-scales and weak-coupling
{ has been developed for power systems, Markov chains, and other classes of i
o large scale networks [12-15]. 1If the interactions of N-"local" subsystems .
= i;

are treated as 0(e), and if each subsystem has an equilibrium manifold (null
space), then the local subsystems are decoupled in the fast time scale. However,

they strongly interact in a slow time scale and form an aggregate model whose

JB

dimension is equal to the number (N) of the local subsystems. The system

is thus decomposed into N+l subsystems (N in the fast and one in the slow

..
A e

time scale).

Te elucidate this relationship, consider the following class of f!
interconnected subsystems
dx, _ N _
—d‘t— = _E—.Aii Xi + ’Z Aij Xj ; i=1,2,...,N (3.1)
i j=1
j#i
where si>0 and Aii is a stable matrix with one zero eigenvalue. Assuming that fj
3

;i(O) is not in the null space of Aii’ the first term dominates the second

term on the right hand side of (3.1), and therefore the interconnections can be
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neglected initially. As the fast transients draw ;i(t) towards the equilibrium
manifold (the null space of Aii)’ the two terms on the right hand side of (3.1)
become the same order of magnitude, and therefore from this time onwards the

interconnections can no longer be neglected. Hence, the dynamic behavior of

(3.1) can be characterized by two separate motions: an initial fast transient
within each isolated subsystem, followed by a slow motion around the equilibrium
manifold obtained on neglecting the interconnections. Therefore, in the short
term the subsystems can be treated in isolation, while in the longer term they

become strongly-coupled.

We now introduce a transformation to make the slow and fast parts

of ii(t) explicit. Let

| 71T iEN
\ ‘ A 1
; 0 k |
- . v A 0 3z
a %20 _ 2 ; 22 )
dc ) L " LT
. ! e
:_i 0 .° ! ! 0 ) :J. ‘
) BN w| | Sy | Ry |
3 0 A A e
12 Awl | (3.2)
A 0 ... A %,
"~ s 2 2N 2
- |
| A1 A2 O || ™|
or
= -1 -
X = (0 Ao-+A1)x. (3.3)
- Define the left and right eigenvectors of AO for the zero eigenvalue as
AOT = 0, VAo =0, VT = IN
w

‘... . A
I._~ . W el B . - L A S, . - e . . .- L. )
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We also define blo

o, vA,,, =0, v,t, = 13 i=1,2,...,N

block diag[tl,tz,...,tN]

block diag[vl,vz,...,vN]. (3.4)

ck-diagonal matrices W and S as follows

WL =0, VS§=0, WS=1 .. (3.5)
Now, using the following transformation
x = VX, xEERN
2 = Wg, z€rR"V (3.6a)
and its inverse
x = Tx+Sz, (3.6b)
the interconnected system (3.3) can be transformed into
X = VAlTx + VAlsz
Qz = QWAlTx + W(Aoi-QAl)Sz (3.7)
For sufficiently small €0 (3.7) can be approximated by the model
N .
y =VATx + I A.z.
1 j=1 313
Eizi = wiAiisizi; i=1,2,...,N (3.8)
where
" -\
VlAlj
N v,A
A, = 2725 L.
3 R
"y |
: TR oo .
5 MY} PRI I RN .,-"'..._.:. x-.q_'.:-l.#x_.ﬂ.s. U R T Y T

“ .
L og 2,
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ji Notice that the fast transients within the subsystems are decoupled, and
they interact only through the slow core. A long term aggregate model is

obtained by letting si->0, and is given by

o
gL

x_ = VAlsz. (3.9)

i ]

The previous analysis has shown that for a wide class of large scale

NPy DN

"‘i:: .‘r‘l
:

systems, the notions of subsystems, their coupling and time scales are inter-

related and lead to a multiparameter singularly perturbed model with a
strongly-coupled slow "core" representing the long term system-wide behavior,

and weakly-coupled fast subsystems representing the short-term local behavior.

With the presence of control and stochastic disturbance inputs, a

L ]

generalization of (3.8) can be obtained as

- N
k dx = A xdt+ - (A ,z.dt+B ,u.,dt+G ,dw)) (3.10a)
00 j=1 0373 oj ] cj ]
N
e.dz, = (A, x+A,.z + L e, A .z +B  u)dt+/e G  dw,
i i io i1 =1 13133 ii i 1411
j# f=1,2,...,N (3.10b)

where {ui(t); i=1,2,...,N} are the control inputs, and {wi(t); i=1,2,...,N}

are standard Wiener processes independent of each other. Each fast subsystem

has its own singular perturbation parameter ei,and is weakly-coupled to s

other fast subsystems through eij' The fast subsystem i is affected by its

'
.
Ly aaxl

)

N I R
AT PR v e '
ot SR R
V)

PRI PN |

own control input ui(t) and disturbance input wi(t). The slow subsystem, being

F the common 'core'",is affected, in general, by all the subsystem controls and

disturbances.
~ s
a In a situation like this, it is ratiomnal for a subsystem controller L“i

o

|

s

to neglect all other fast subsystems and to concentrate on its own subsystem,

-_
a[# (2 Y
1 s AT,
,
alal { RV IR SN I N L

L. . - - ' - . . BRI R . . . LI O PO ARSI .
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plus, of course, the slow interaction with others through the "core." For
the i-th controller '"to neglect all other subsystems" simply means to set

all e-parameters equal to zero, except for €0 which is to be kept at its

true value. The i-th controller's simplified model is then !
dxt = Axlde+A z.de+B u.de+ 3
= .Z, . .dw . .
i 0ili 0i¥idt j=1(Bijujdt+GOdeJ)-i-Goidwi (3.11a) ]
j#L {
e.dz, = A, xTdt+A,.z,dt+B, u.dt+/c. G, dw, (3.11b)
i i io ii i iii i iii
where
-1 -1
A.=A - T A A A, , B,, =B .-A A B,..
i oo j#i 0] JJ Jo 1] o] o] 33 1]

We denote xi with a superscript rather than a subscript to stress
the fact that xi is not a component of x, but the i-th controller's view of
x. In reality, the model (3.11) is often all that i-th controller knows about
the whole system. The k-th controller, on the other hand, has a different
model of the same large scale system. This situation, called multimodeling,
was first formulated and investigated in [2] in a deterministic setup (with

no disturbance inputs).

kel GORESS chedied  Beiee . Sececten . B . deded

In the next section we shall study the impact of multimodel assump-
tions on the design of multi-agent control strategies in the presence of

disturbance inputs and noisy observations.
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4. MULTI-AGENT DECISION PROBLEMS

We shall restrict our discussion in this section to the case of
two decision makers, as this will keep the notation simple and ease the
exposition of the principle ideas. All the results that we shall present
here extend to the case of more than two agents in a fairly straightforward
fashion. Furthermore, we shall present and discuss only the main results; the
proofs of the various propositions shall be omitted, but they can be found in
the references cited.

It is well-known that a system of the form (3.10) can be transformed
into a system with purely slow and fast variables [2]. Hence, without loss
of generality, we shall consider multi-parameter singularly perturbed systems

of the form

2
dz = A zdt+ I (B ,u,dt+G_ dw) (4.1a)
o 00 O j=1 o] ] OJ ]
=
eidzi (Aiizi-+eiinjzj-+Biiui)dt + Vei Giidwi’

1,j=1,2; i#] (4.1b)

with dim zi=ni, i=0,1,2,and dimui=mi, i=1,2. The initial conditions are

assumed to be Gaussian with

E[Zi(O)] = Eio’ E[ZI(O) Z:;(o)] =N i9j=0’1’2- (4-2)

i3’

Furthermore, we shall restrict ourselves to the case {Re A(Aii)<<0, i=1,2}.
In a multimodel situation, decision maker i models only z, and zs
but neglects zj. Also, his observations are functions of z, and z; alone.

This situation with decentralized observations leads to problems involving

norniclassical information patterns, for which no finite-dimensional solution

-w - a_i AN R Y S Y UL I R R TR T I R .
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exists in general. 1In order to obtain finite-dimensional solutions which

can be implemented in practice, one needs to modify the information structure.
In this section we shall study three problems with quasi-classical information
patterns. The first problem is a Nash problem with continuousbmeasurements
where the information available to the decision makers is restricted to the
state of a finite-dimensional compensator of a specified structure. The next
two problems are team problems with sampled measurements, where the decision
makers exchange information with a delay of one sample period. The two types

of sampled measurements are those that we have considered earlier in Section 2.

4.1. Nash Game with Continuous Measurements

The decision makers make decentralized continuous measurements which

are given by

dy . =C .z dt + dv_,
oi oio oi

i

dy,, = C,,z.de + /EI dv. . i=1,2 (4.3)

ii

where dim Yoi = Poi and dim Vi1 Piq The processes voi(t) and vii(t) are

standard Wiener processes, independent of each other and of the process noise

. ' = [} ]
wi(t). Defining x [zo z) 22], y

1
' _ ' ' - '
=y izl Vi = [voy

i oi Vel
i
vv'=[wi wé]. The system of equations (4.1)-(4.3) can be written in a

1
v, . and
111

composite form as
2
dx = (A(e)x+ I B,(e)u,)dt + G(e)dw (4.4)
i:l 1 1
= : i= 4.5
dyi Ci(e)xdt-fdvi, i=1,2 ( )

E(x(0)] = io, E[x(0)x"(0)] = N (4.6)

G

» ylu

A
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i where dimx=n=n°+nl+n2 and dimyi=pi=poi+pii. The matrices A(e), Bi(e),
G(e), Ci(e), and N are appropriately defined.

The information available to decision maker i at time t is given by

F a (t) = {fci(t). :'(o, N} 4.7

where ii(t) is the state of the n-dimensional compensator

dxi = (Fixii-Hiui)dt + Li[dyi-cixidt]' (4.8)

Let ci(t) denote the sigma-algebra generated by the information set ai(t).

Further, let Hi denote the class of second-order stochastic processes

[

{ui(t), t >0} which are oi(t)-measurable. Then, a permissible strategy for
m,
decision maker i is a mapping vyt [O,T]><Rn->R *, such that vi(-, ai)e Hi.

Faie

- Denote the class of all such strategies for decision maker i by Fi.
For each {viE.Fi; i=1,2}, the cost functionals for the two decision

E- makers are given by

Ji(vl,vz) = E{zé(T)Foizo(T)-+eizi(T)Fiizi(T)

T
] ? 1 = s =
+é (onoizo+ziQiizi+uiui)dt|uj(t) vj(t,aj), j=1,2}
i=1,2 (4.9a)
or, equivalently
. T
- A ' N = i=
i; Ji(vl,vz) = E{x (T)Fi(E)X(T)+£ (x Qix+uiui)dt]uj (t) vy (t,aj), j=1,2}
E; i=1,2 (4.9b)
where the expectation is taken over the underlying statistics.
o

The decision makers are required to select the matrices F;, H:, L;;

the initial conditions ﬁ;(O) and strategies vz[t,ii(t)] such that




.........

given by

equation

* ky *
Ji(vi,vj) < Ji(vi,vj)

Vv . ET, ;
i i

i,j=1,2;

i#3.

The pair of inequalities above defines the Nash equilibriwn point.

LA O AR e ATl S

The optimal solution to the problem defined by (4.1)-(4.10) is

v¥ =
i

M=TFM+ FM' + BB';

-B'K.x
11

Mg (0)

o " .Y 4 - - N T ate " .
SCR R L ST T

. i=1,2
1

1

=x X +N, i=j=0

=N , otherwise

FY = A-BBIK [T+ QL M DM M D] 1,3=1,25 14]
L; =M, .Ci; i=1,2
H: = B3 i=1,2
x3(0) =x; o i=1,2
where Ki satisfies the coupled set of Riccati equations
1'<i = K A-A'K -Q +K;SK, +K;S.K HKS K, K, (T) =T,
si=BiB£; i,ij=1,2; i#]j.

M(t) is a symmetric nonnegative definite matrix satisfying the Lyapunov

obtained by extending the results of [16] to the nonzero-sum case, and is

(4.11a)

(4.11b)

(4.11c)

(4.11d)

(4.11e)

(4.12)

(4.133a)

Calla S A
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ey
N

= rk_ *_1 %
F A-F1-5,K, FI-LIC, $,K,
—F¥*- k_1 %
A-F3 le1 slx1 F3-L3C,
- 90 0
= - %*
B G LJ 0
-G 0 Lg (4.13b)

The compensators are unbiased, in the sense that for all t€ [0,T),
E{x(t)|:‘<i(t)} = ii(:); i=1,2. (4.14)

Furthermore

E{[x(t)-ﬁi(t)]ﬁi(t)} =0; 1i=1,2. (4.15)

Thus, each component of the error x(t)-ﬁi(t) is orthogonal to each component
of ii(t), and ii(t) may be regarded in some sense an estimate of x(t). Notice
that the solution exhibits a unidirectional separation in estimation and control.
Although the control gains are obtained independently, the optimal filter
matrices and covariance M(t) depend on the control gains, resulting in a
"dual effect" [17].

The optimal costs are given by

T
k _ =1 -
Ji = oni(O)x0+tr{Mii(0)Ki(O) +(f) (K;S,KM. . +K S.K.M,

i j 3 jo

RS RM Ddel 1,5=1,25 i#]. (4.16)

j i

»
mie et

3

The linear strategy (4.11a) is the unique Nash strategy for this problem.

IR
) L)
»“.

Since the finite-dimensional estimators (4.8) are not Kalman filters, it is i
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not clear, at the outset, what their limiting structure (as the small parameters

go to zero) looks like. Does the full-order estimator decompose into a number of

decoupled low-order estimators? Is it possible to obtain a near-equilibrium

solution from low~order subproblems?

It will be shown that, in the limit as the small parameters go to zero,

the full-order estimator (4.8) decomposes into an no—dimensional estimator

in the slow time scale which has a similar structure, and two n,- and n,-
dimensional Kalman filters in the fast time scale. Furthermore, the near-
equilibrium solution is in fact the multimodel solution, i.e., the solution
obtained when decision maker i neglects zj, and models only z, and z,. The
multimodel assumption leads to the formulation of three low-order subproblems:
two independent stochastic control problems, one for each decision maker, in

the fast time scale, and a stochastic Nash game in the slow time scale.

The slow subproblem is obtained by neglecting all the small para-

meters in (4.1), and is given by

2 2
dz =(A z + I B .u, )dt+ I G ,dw, 4.17)
os 00 0S =] o1 is j=1 o1 1
C01 { 0 dvoi !
dy, = z dt+i u, dt + i
is s : 1 -1 : -1
| 0 j = —C_, A B,  dv_ . -C__A .G _dw
i L e il ii j i iiiiii 1
. - 1 L -
= (C, z +D_ u, )dt + dv__; i=1,2 (4.18)
is os “is is is
= z ! = . . .
Elz (O] =2 ., Elz (0) 2] (0)] =N (4.19)

Each decision maker is constrained to use only an no-dimensional compensator

of the form

&

" L
al sl sl
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dzis = (Fiszis-+Hisuis)dt4-Lis[dyis-Ciszisdt_Disuisdt]’ e

i=1,2. (4.20) -]

.‘;

Let fﬂ

=

ais(t) = {zls(t), Z o Noo} (4.21) ?34

and ois(t) denote the sigma-algebra generated by the information set ais(t). :;g
Further, let His denote the class of second-order stochastic processes sz
{uls(t), t20} which are oy (t)-measurable Define the slow strategy Vigr 38 1

n m -
. i -
the mapping Vig .[0,T]><R +R ~, such that vis( ,ais)e His' Denote the class =
of all such slow strategies for decision maker i by ris' éj%
=3
For each {v € F 3 i=1,2}, the slow cost functionals for the
decision makers are given by
-
N = ' ' i
s(jls’VZS) E{zos(T)roiz (T)-+j (zos 01 0os ulsR u )dt
[ (t)-v (t,a g 3=1.2}; i=1,2 (4.22)
where '
Ris = I+(Ai ) Qi(AilBll)
The decision makers are required to select the matrices FIS, st, ;S;
the initial conditions QIS(O), and strategies v;s[t’z1s(t)] such that
* * . s s o . .
Ji( ig'Vig) S I3 is"’js) Vv, €T, 3 i, j=1,2, 1i#3j. (4.23)
The optimal solution to the slow subproblem defined by (4.17)-(4.23) is
given by
* = =l . =
vk = <R, K, 2z, =1,2 (4.243) .
is is oi is is -
-\':;4'-) _‘;‘."- e -A;LA_: . e m T " ~. .'.." .‘.:r. A LR L _‘AL‘A.‘LA&.:J::AI'.:"_;.‘_ALAJ_;L
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* -1 = = = = -1 . . -
Fi = A, - B R BJ.K [T+ (M -HHM -M )1 i,5=1,2 =
j isToi"; 3 i (4.24b)
i#j
L H..co.lG s, ’{I+(CAG cc..ate, )17ty
is [ ii ol : 01(C11A11 i) ) ii 1i 11)
(4.24¢) -
i=1,2 :
* -8 i=1,2 (4.24d)
His = Bop P T :
* 0) = 2 . i=1.2 (4.24
le( ) = ZOO y 151, .24e) _
where Kis is the solution of the coupled set of Riccati equations
K, =-K, A =-A"K, -Q.+K, S, K +K. S, K,_+K, S. K. ; =
is is" oo oo 'is oi is“is is is“js js js“js is
(4.25)
-1,. . . ._ P
Kis(T) - roi ’ Sis - BoiRisBoi 3 1,3=1,25 if]
. -
M(t) is a symmetric nonnegative definite matrix satisfying the Lyapunov -4
equation
M=FM+MF-+BB” ; M.(0=1|z 2z +N_; i=j=0 (4.26a)
s s s's ij oo “oo0 0o 7
. aq
where ] Noo , otherwise ) fﬂ
Ao 7 51K1s T 25K S1sfis S16%2s
F A * A
s oo F1s - SZSKZS Fls - 1scls SZSKZS
* K * L* c wd
i Ao ™ Fas 7 515Ky 516816 Fos ~ Lasbas )
-G 0 0 i
’ |
B = G -LPp L 0
s -Gy TP Dig i
P * o =
B Go B LZS 2 0 L25 ! o
L - 2
G0 = [GOl GOZ]

. . o . - . - - . . - . . =T - . ~ .. - N . IR S T N
e e - L o L ol — FEPRILEITE SN, U3, TR S UL IV, G VTR P | . 0. PR
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0 0
P, = -1 ; i=1,2. (4.26b)
C..A "G, 0
ii ii
' The optimal costs are given by
* - - -
is zoo 15(0)Z oo ¥ tr{Mii(o)K (0 + I(KlsslsKllel * KissjsstMjo
- + K, S, K, de} 5 1,j=1,2 5 i#j (4.27)

js js is 03

The fast subproblems, on the other hand, are formulated 'locally' at the

subsystem level. These are stochastic control problems because the decision

makers do not interact in the fast cime scale:
eydzip = (Ajy24p ¥ Byju dde + Vey Gypdwy (4.28)
u dy... = C,.z .dt + Ye_ dv (4.29)
iif ii"if i ii )
l! E[zif(O)] =z, E[z. 0) z. (O)] = Nii (4.30)
Jif = E{sizif(T)Ti. (T) + f( 11 lf + uifuif)dt . (4.31)
Notice that this fast subproblem is exactly the one we studied in
F detail in Section 2. Its solution, as ei->0, is given by
* . N
Uie T T BiiRie%ir (4.32)
where Kif satisfies the Riccati equation
Kighan * 8% ¥ Qs - KigBiiBiiKie = O (4.33)
- and ;if is the state of the Kalman filter

......... e
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34
d2. . = (A..2.. +B..u )dt + P..C" z
ejdzye = (Agyzyp + By v e + P Co Tdy, . = CyyZ,pdt] 5
; =z
200 =2 (4.34)
Pif is the error covariance of éif satisfying
Piefis T A5iP5f ¥ 634085 ~ PigCiiCiiPie = 0 (4.35)
and the optimal cost is given by
* 2T ex{p + - 3 4.3
Jig = TP eQy + CP K Pl . (4.36)

The following proposition establishes the connection between the solutions of
the slow and fast subproblems and the full~order problem. Its proof may be
found in [7].

Proposition 4.1:

x . * R *x -
Do (ex(0)) = v, (t,2, (€)) + u (2, () + 0(f=]) ;¥ t€(0,T)
gy e * ( ) .
i) Jy = J 4 3+ Toer{Q W+ olfel) ; i=1,2
where
£

(2] =5 €12 €3y
and Wi is the nonnegative definite solution of the Lyapunov equation
A, W, + WA, +G,.G, =0 ; i=1,2 . (4.37)
ii'i ivii iivii
c
Since the multimodel strategies need only decentralized 'state

estimates,'

each decision maker needs to construct only two filters of
dimensions o and n , respectively, instead of constructing one filter of

dimension n, + n;, + n, as required by the optimal solution. This would
o

result in lower implementation costs.

e

o
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4.2. Team Problems with Sampled Measurements

We shall now consider problems wherein the measurement processes of
the decision makers are not continuous on the entire time interval [0,T], but

consist of sampled values observed at time instants to’ ’tN 1’ where

Eysere

tyer St T. Let B denote the index set {0,1,...,N-1},

and yi(j) denote the pi—dimensional observations made by decision maker - i at

e it
A

= < <...<
0 to tl

time instant tj’ j€6. Thus the only measurement of decision maker -~ i in the
subinterval [tj,tj+l) is yi(j).

The quasi-classical information pattern that we shall consider here

1]

is the so-called “one-step-delay observation sharing pattern," wherein the -

decision makers exchange their independent sampled observations with a delay
of one sampling interval. Hence, the information available to decision maker - i

in the time interv . . is
h n al [tJ, tJ+l) i

[ ]
oy = {y;(3), 6j—l} (4.38a) o

where, Sj-l denotes the common information available to the decision makers

in the same interval,.i.e.;

S50 = Gl vyl uy (), vy () (4.38b)

. L

Let Ji denote the sigma-algebra generated by the information set o

j N
ai, and Hi denote the class of stochastic processes {ui(t), tZO} whose

restriction to the interval [tj’tj+l) is oi-measurable for all j€6. Then a
o - A : (p,+p,)N
permissible strategy for decision maker - i is a mapping vyt [o,T] x R "1 "2
m
i N
+ R ', such that vi(-,ai)GHi. Denote the class of all such strategies for

- . N N . . :
decision maker - i by T;. For each {)ieli ; 1=1,2}, we define the quadratic

strictly convex cost function as

R S U Y. T A L < ot
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- 2 N
J(vl,vz) = E{ZO(T)FOZO(T) + izleizi(T)Fizi(T) e
L T 2
E- + cf)(onoz0 + iil(ziQizi + uiui))dtluj(t) = vj(t,aj), j=1,2}

(4.39a)

| -
where {FizO,Qizo, i=0,1,2} and the expectation operation is taken over the :
underlying statistics.
Equivalently, in terms of the composite state vector x(t) of (4.4),
-
the cost function can be written as o
T .
J(vl,vz) = E{x"(T)T(e)x(T) + (f)(X’Qx + uiul + uéuz)dt|uj(t) = vj(t,aj), j=1,2} _
(4.39b) _
where I'(e) and Q are appropriately defined in terms of the matrices appearing ’
in (4.398). :._‘
. 7 . . * A . 3 . . . ;‘
A team optimal solution is a pair {vi EF? , 1=1,2; which satisfies
& % j
J(v,,v,) = inf inf J(v_ ,v.) (4.40) |
1°72 1’72
N N —
r r o
1 2 =
Here optimal and near-optimal strategies will be obtained for two cases of
sampled observations, as delineated below.
hey
4.2.1. Case 1l: Noisy measurements of sampled values of state h
At sampled time instant tj,jee, the decision makers observe
y; () = Ciozo(tj) + Ciizi(tj) + v, () :
= + i) 3 i=
Cix(tj) Vi(J) s 1i=1,2 . (4.41) .

The random vectors {vi(j);jee,i=l,2} are assumed to have independent Gaussian

statistics {vi(j) ~ N(O,Vij),Vij>0,j€9,i=l,2}. Their statistics are also
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assumed to be independent of the Wiener processes {vi(t) 3 i=1,2} and the
initial state vector x(0).
The optimal team solution to the problem defined by (4.4), (4.6),

(4.38)-(4.41) has been derived in [18], and is given by

v

vi(E,ag) = POy, (3) - ¢EG] - B{S(E)v(e,e)EW) 5 1=1,2

te[tj,tj ) 5 j€e (4.42a)

+1

where Pl(t), Pz(t) are piecewise continuous functions on [0,T] and satisfy

the coupled set of linear integral equations

t
P,(t) = B/S, (t) { wij(t,r)BiBiLij(r)dT - BiLij(t) s i=1,2

j
€ . €
t [tj,tj+1) . = (4.42b)
where ii
-:."1
t "™
. . ‘..._ 4
Lij(t) = Si(t)[¢(t,tj) + f o(t,r)BkPk(r)der]Zi(J) + Kij(t), é;i
t.
] i
- -'.{
i k= . . tE . i€ e
ik=1,2 ; i#k ; t [tj,tj+l) ; jE8 (4.42¢) i
-
< = - (A - B,B’S.(t))K,.(t) - S,(t)B P (£)C, T.. : i,k=1,2, i#k =3
Kis(0) (A - B;B;S; 1 (OB R (DG s kL2, -
= 1€ ;
Kij(tj+1) 0, te[tj,tj+1] , JEB (4.42d)
S(t) and Si(t) satisfy the Riccati equations
§=-A°S-SA-0Q+S[BB +B,B;]S; S(T) =T (4.42e)
é = - . - - - . =
s, A'S, - S,A - Q+ S.BBS i Si(tj) S(tj)
€ = j=N, ... . .
t (tj_l,tj] , i=1,2 , j=N, W1 (4.42%)
O T T g L.l_ e P RPN \;‘-.f::
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v(t,7) is the state transition matrix satisfying j
v(t,T) = (A - B BSS - B,BiS)(t,T) 5 w(r,1) = I (4.43a) 1
wij(t,l') is the state transition matrix satisfying %
i=1,2 , j€6 (4.43b) }
$(t,t) is the state transition matrix satisfying J
o(t,7) = Ad(t,T) 3 ¢(t,7) = I (4.43c) 1
£(3) = n(tj') = E[x(tj)léj_l] and n(t) satisfies 1
L 2 * ’ — é
n = An+ LB (t,a) 5 n(0) =X )
i=1 'i
t€(t. .,t.) , j=1,...,N A :
( j-1 J) h| (4.44)
n(tj) = n(t;) + MDD [y - Cn(tg)] g
N . . > . -1
£,(9) = Z(tj)ci[ciz(tj)ci + Vij] ; i=1,2 , j€o (4.45) 3
where Z(t}) = E[(X(tj) - n(t;))(x(tj) - n(tg))‘ ] and I (t) satisfies 'q'
1
d
I =AL + ZA° +GG” ; T(0) = N
t€(e, .,t 3y j=1,...,N .46
( j-1 j) hi (4.46)
I(t,) = I(t)) - M(j)CE(e] .
(J) (J) (1 (J)
and ,
|

M(3) = Z(t;)C‘[CZ(tg)C‘ + Vj]'1 (4.47a)
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. V. = diag(V..,V.. 4.47b

| j 28(Vy5:Vp5) ( )
y(3) = [yi(j) yi(j)]’ (4.47¢)
¢ =1Ic; c;l ) (4.47d)

Due to the presence of widely separated eigenvalues, the integro-differential
equations (4.42)-(4.47) involved for computing the optimal solutions are
numerically stiff. This renders the optimal solution computationally
infeasible, specially when the order of the system is very large. Futhermore,
when the small perturbation parameters are unknown, or when one decision maker
does not have a knowledge of the fast dynamics of the other decision maker,
it is not even possible to compute the optimal solution. Hence, there is a
need to look for suboptimal solutions. The multimodel solution proposed
below exploits the special structure of the system to yield a solution which
does not require a knowledge of the small parameters, and allows the decision
makers to model only their own fast dynamics. More importantly, as in the
problem with continuous measurements, the multimodel solution is well-posed
in the sense that it is the limit of the optimal solution as the small
parameters go to zero.

The multimodel solution is obtained on solving three low-order
problems: a slow team problem under the one-step-delay observation sharing
pattern, and two fast stochastic control problems, one for each decision

maker.

The system model for the slow subproblem is given by (4.17), (4.19)

and the observations by
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163 = Cozoo(E) + vy ()

The cost function is given by

]
:
:
y3(d) - Ciyzg(ey) 5 388, i=1,2 . (4.48) 1
]
1
]

T
Js(vls’vZS) = E{zos(T)rozos(T) * é(zosQozos i is is is
=v, (t,a,) , j=1,2} 4.49

Vig J) j ( ) :
5 , where
[ _ -1 .-l
Yo Rig = T+ (A;3B;3)7Q;(4;3B44)
T

The optimal solution to the slow team problem defined by (4.17), (4.19),

(4.48) and (4.49) is given by

———
«
:
P \ B

* . c . -1.. o . SN . s
(=] s jE .
t [tj,tj+l) 5 J€9 (4.50a)
where Pls(t), st(t) satisfy the coupled set of linear integral equations !
-1 ¢ -1 -1 i
Pyg(t) = Ry BO.S, () [ 4y (6, m)B Ry Bl Ly, (T)dr = Ry BOL (0 5 11,2
J
(= « jE . a
t [tj,tj+l) ; j€9 (4.50b) ,
where 3
t 1 .
= rax) []
b
A
- .« 4 . < . i€
i,k=1,2 ; i#¢k ; ¢ [tj,tj+l) ; J€6 (4.50¢) a
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. _ -1 . . .
Kijs(t) - (Ao BoiRi5301sls(t))Kijs(t) (t)B kRk Pks(t)cko 1s(J) ’
= . = | . (= .sLC. M 'Ge .
Kijs(tj+l) 0 ; i,k=1,2 ; itk ; t (tJ t_]+l] j (&4.50d)
Ss(t) and Sis(t) satisfy the Riccati equations
S =-A"S -SA -Q +5S [B RlB + B RlB’]S'S(T)=F (4.50e)
s 00" s s 00 o] s ol ls ol 02250278 s o )
é =~ A"S, -8, Q+SBRlBS S, (t.) =S _(t,)
is 00" 1is is ol is ol is 0i’is * “is 3j s 3"
t€(e, ,,t.] 3 i=1,2 ; j=N,...,1 4 .50f
(3—1 J] b ( )
ws(t,r) is the state transition matrix satisfying
b (t,7) = (A - B_RTBZS_ = B_,RIBZS ) _(£,1) 5 b (1,1) = I (4.51a)
s’ oo 0l"1s ol"s 02 2s 02 > Vgt ? :
wijs(t,t) is the state transition matrix satisfying :
(t,7) = (A =B R.IBZ.S. )u.. (t,7) 5 ¥,. (1,7) = I
s’ oo ol is oi"is’ "ijs" "’ > Tijst? ]
c 519 s i€ , -
t€ley,t,,) 5 171,25 €8 (4.51b) %
0 \-.'4
¢S(t,1) is the state transition matrix satisfying )
o (t,7) = A o (t,1) 5 ¢ (1,7) =1 (4.51c)
£,(3) = ns(tj) = E[zos(tj)|dj_1] and ns(t) satisfies
* 2 * Rl \
Ns = Aoons + I Boivis(t’ai) ; nS(O) " %00 ot
i=1
telt, ,,t.) ;3 §=1,...,N ? 4.52 R
[ j-1 J) h ( ) :
r1S(tj) = ns(tj) + Ms(j)[ys(j) - Cons(tj)] =
=~
. .._-”,.ﬂ_.-,.-_,-- _.-_.:.. e ._.'.--_____.’ S o . .\.\ \\
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. -1
j) = ; DCo +
ZlS(J) Zs(tj)Cio[Cion(tJ)C CygWiCyy + Vlj]

where Wi satisfies (4.37).

2
z:&: = Aoozs + ZsAoo + .Z GoiGc;i ; ZS(O) = Noo
i=1
telt, ,,t.) ;5 j=1,...,N
[ j-1 J) b
Zs(tj) = Zs(tj) - MS(J)COZS(tj)

and

2

j)c + L C11W1C11 + Vj]

M (§) =2 (t yesic, z (e
i=1

y (1) = 37 (1) y5,(D1”

Co = [Clo 20
Cyp = [€f; Ol
Cpp = [0 CLT7

(4.28), (4.30), the observations

yif(j) =C f(t ) + v, (J)

o i e
y () = €z (e = €z (£)) 5 €8

and the cost function

T

Jig = Elegze(MTz, (M + f(z 1£QZ s + Uigtygdt)

; 1=1,2; €6

zs(:g) = E[(zos(tj) - ns(tg))(zos(tj) - ng(cg))'] and I_(t) satisfies

The fast subproblem for decision maker - i is defined by the system equations

42 -4

(4.53) 4

(4.54) "
(4.55a) 'E
(4.55b) éi
(4.55¢) .
(4.55d) -
(4.55e)

(4.56)

(4.57)

]
d
.
d
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Notice that we have studied this stochastic control problem earlier in Section 2.

Its solution, as ei+0, is given by

%

uge = = ByiKypbse(e,e)z, (6 5 eSle b ) 5 g€8 (4.58)
where Kif satisfies the Riccati equation
ALK e + KA +Q - K fBliBiiKif 0 (4.59)

wif(t,tj) is the state transition matrix satisfying

egbip(taty) = (Ag; = ByBriKigdbie(toty) 5 dye(tyoe) =1

tE[t yT, 5 j€0 . (4.60)

41

~

2 ¢ is the output of the filter

€.2.. = A B u if te[t l,c L) 3 j=1,2,

i1%if T

zif(o) =z (4.61)

236 (85) = 23 (€ + M (D Iy, (D) =y, (e))]
and

o L . - -1
Mif(J) = wicii[ciozs(tj)ci + cuwlc11 + Vij] . (4.62)

The following proposition establishes the near-optimality of the multimodel
solution. 1Its proof may be found in [19].

Proposition 4.2:

* * *
1) vilt,a) = v, (t,0) + u (6) +0(e]) ; ¥t€(0,T) 5 i=1,2

) Tt Yy = x % g
ii) (vl,vz) = Js(vls’VZS) + 2 [J,

CH f) + T er(QW)] + ollel)
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4.2.2. Case 2: Sampled values of continuous noisy measurements i
At sampled time instant tj, j€6-{0}, the decision makers observe
- t.
N J
y; (1) = g [Cyz (1) + Cyyz (D ]dT + g (c)) =
t.
J
= ({ H =
(f) Cyx(t)dt + q;(t,) 5 1=1,2 . (4.63)
Note that in the time interval [to’tl) no observations are made and the -
decision makers have access only to the prior statistics of the random
quanities involved. Here, {qi(t) ; i=1,2} are standard Wiener processes ‘
-
‘ independent of each other. Furthermore, their statistics are also assumed
to be independent of the Wiener processes {vi(t) ; i=1,2} and the initial
state vector x(o).
. Let =
D
- y;(3Y = y;G) -y, (G~1)
t.

J !
= Cix()dt + v () ; i=1,2 (4.64) -]
- .. :
- J—l
i; where vi(j) = qi(tj) - qi(tj_l) is a discrete-time Gaussian white noise b:
" ith d vari s - .

y process w zefo mean and variance Vij (tj tj_l)I -
Let Ei be given by (4.38) with yi(j) replaced by ;i(j),and let Si
4 denote the sigma-algebra generated by &i. Then clearly, oi and 5; are v
E' equivalent. ]
- The optimal team solution to the problem defined by (4.4), (4.6),
(4.38)-(4.40) and (4.64) can be obtained in a manner analogous to Case 1, -
¢ and is given by {20] =
o
A Y

e Tat
4 o
Sl RS Y

T T e T e

e L e T
. . '
. »_"-‘,"1 . e - '.-‘!'- *,
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‘i
* - - ~
((ee) = Py, (§) - { Cin(u)dr] - BiS(t)w(t.tj)E(J) ; 1=1,2
j=1
. 3e .
tE[tj,tj+l) ; jE€6 (4.65a)
where Pl(t). P,(t) satisfy the coupled set of linear integral equations
t
Pi(t) = Bisi(t) i wij(t,r)BiBiLij(T)dr - BiLij(t) ; 1=l,2
]
(] + i€
t [tj’tj+1) ; €8 (4.65b)
where
t
Lij(” = Si(t)o(t,tj)zi(J) +8,(t) { ¢(t,7)B P, (1)dt A, () + Kij(c) ;
h|
= . . e . EE .
i,k=1,2 ; itk ; t [tj’tj+l) ; jE€6 (4.65¢c)
kij(c) = - (A - BB (1)) Kij(t) - Si(t)BkPk(t)Ai(j) H Kij(tj+l) =0,
i k= . g R . e
ik=1,2 ; i#k ; ¢t (tj,tj+l] ; j€9 . (4.65d)

S(t) and Si(t) satisfy the Riccati equations (4.42e) and (4.42f), respectively.
The state transition matrices y(t,t), wij(t,r) and ¢(t,T) satisfy the

equations (4.43).

é(j) = n(t;) = E[x(tj)lgj_l] and n(t) satisfies

. 2 % - - \
n = An + .Z Bivi(t,ai) ;s n(0) = X,
i=1
tG[tj_l,tj) 3 j=1,..;,N > (4.66)
- - b
n(eg) = nle) + MG YEG) - [ cn(r)dr]
t,
j-1 /
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Zi(j) and Ai(j) are appropriate dimensional matrices defined by
) t, t,
- 3 j
- 30 = (oCeg,t, ) 5-1) / o7(e,e, _Cde + [ o(t,,1)66" [ ¢°(1,r)
J E. J r
t5-1 j-1
. -1 L.
Cider]Vij ; i=1,2 ; j€8 (4.67a)
t, t,
3 j
8,3 = [{ Ck¢(t,tj_l)dt2(tj_l) [ ¢ (t,e5_))Cide
j-1 £5-1
t, t.
J . J J ~=1
+ f Ck,(tj,r)GG j'd)(r,r)Cid'rdr]Vij ;
t. r
; j-1 ’
L i,k=1,2 ; i#k ; €9 (4.67b)
where q
e t, t,
- . ] 3
Vij=f C;ole,c, )dtZ(t N ¢(tt )cdc+vJ
y-1 £5-1
t, t,
j r b
+ f ¢, [ sG,066" f $7(L,T)C dedrdr ; i=1,2 ; j€8 (4.67¢)
CJ-l tj—l T
Z(CJT) = E[(x(x)) - n(cJT))(xuj) ~ n(c;))'] and IL(t) satisfies 4
£=AL + ZA” + GG~ ; I(0) =
t€lt, .,t.) 5 j=1,...,N
[ -1 J) h|
%
- _ i (4.68)
I(e.) - M CH(r,t, drI(t, t.,t,
(£ (3)[{ (ot PAEE(e; o7 (e e, )
j=1
t, t,
j j
+ [ [ ce(r,t)G6 s (¢, ,7)drdr]
t. . r ]
j-1
\-\"4.\\ ¥ \ "~'<“ ~'-"\-_ e .'A".L.A. ‘-‘.-‘.7_
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M(j) is given by
t. t, t,
h] h| 3 1
M(§) = [oCe,,t, )I(e, N[  6°(r,t, ,)Cdr + [  ¢(t,,1)66"[ ¢ (r,t)C drdr]V; ",
377317710 j-1 " j T i
j-1 j-1
€0 (4.69a)
where
t. t.
. fJ j
vV, = Co(t,t, )drIi(e, “(r,t, ,)C*dr + V,
37 9 (T e, )drI( 3-1’{ $7(r, e )C7dr + V,
j-1 j-1 ]
t. t, B
3 r h| ]
+f[ ¢f #(1,0)66"[$°(2,7)C dRdrdr ; €O (4.69b) _
t t. T _-;_"
j-1 “j-1 -
R
Vj = diag(Vlj,sz) (4.70a) 5i{
y@) = [y{GQ) y;M1° (4.70b) L
e
C = [cl 02] . (4.70c) :
As in Case 1, the optimal team strategies are unique and linear in ;

the information available to the decision makers, but the expressions involved
are more complicated. Hence, the computational problem worsens, making the
need for suboptimal solutions more acute. Again the appealing structure of
the multimodel solution makes it an attractive alternative.

As in earlier problems, the multimodel solution is obtained on
solving a lower order team problem in the slow time scale and two low order
decentralized control problems in the fast time scale. The system model for

the slow subproblem is given by (4.17), (4.19), the cost function by (4.49),

and the observations by
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t.
- . [J .
yis(J) = Ciozos(r)dT + vi(J)
t.
j-1
t.
2y, () - [ Cyyz(dr 5 i=1,2 5 j€8-{o} (4.71)
t.,
j-1
The optimal team solution to this slow subproblem is given by
t.
* - - . J lB g
216(E0y) = Py (D) 1y, (5) - { Cione (AT = Ry BZS u (6,605 ()
j=1
i=1,2 ; t€[t ) ;3 i€s (4.72a)

5755+
where Pls(t), st(t) satisfy the coupled set of linear integral equations

l l -1

(t) = 1s oi 1s(t)f ¢ (t B 1RlS oi lJS(T)dT " R18B01L135(t) ;
J
;= . e . -Ex
i=1,2 ; ¢ [tj,tj+1) ; jE6 (4.72b)
where
g -1
136(8) = S5 (O)o (66T, (3) + sis(t){ b (€ TIB Ry Py (T)dTd, (5) + Ry (6)
J
i,k=1,2 ; i#k ; tE[t ot +1) ; jE6 (4.72¢)
Ry (8) = =(A__ = B_RIIBS. ()Y K, (6)=-S, (B R-'P ()4, (3)
ijs 00 oi is oi'is okRks ks is'3/ 3
= * i = . i - e . 3
Kijs(tj+l) 0 ; i,k=1,2 ; i¥k ; t (tj,tj+l] ; j€8 (4.724)

SS(t) and Sis(t) satisfy the Riccati equations (4.50e) and (4.50f), respectively.

The state transition matrices ws(t,r), wijs(t,r) and ¢S(t,r) satisfy the

equations (4.51). Furthermore,

§ (S

b
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g ; j = - = 3 i :
. 2543 ns(tj) E[zos(tj)léj—l] and n_(t) satisfies
L 2 -
nS = AOOnS + ,Z oi lS(t G ) ; nS(O) = zOO
i=1
" . .
) t. .,t.) 5 j=1,...,N 4.7
(e p0t5) 5 3 (4.73)
3
§ ng(tg) = n (e) + M (D ¥ G) - { Cong(1)dr]
i-1
Els(j) and Ais(j) are appropriate dimensional matrices defined by
ty £ )
- i3 = logley,e, I (t;_ l)f tg(et, ()€ de + f 5o (tgE) zlc 3624
TRy Fj-1 =
t.
J =1
o7 s {= 7 e 3
) £ 54 (T,0)C] dudr ]V i=1,2 ; j€o (4.74a)
ts £
1) = U o (e, ydes (e, l)f 87 (E,ty_1)C] dt
f3-1 ° t5-1
B ‘. 3
+ .
i C % (£55) I 6, oif¢ (t,r)C; drdr] v, {5 3
. t. o i=1
| =1
!
- i,k=1,2 ; itk ; j€8 (4.74b)
where
t,
- | J
V., =V,  + - -
TIRALY { Ciobq(tat des (, ){ to(t,e, ))C dt
j-1 j-1
t, t.
hi rJ
B + { Ciypypleaty, l)dcwi,t 87 (E,t, )C] dt
-i -_l ._l
- J ]

W

g -oow? . PR . . .
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AR N C ) z GioGiof¢s(2,r)Ciod£drdr
j—ltj-l i=1 T

+
"
[SN

t

J
. . e . e
Cii¢if(r,r)GiiGii{¢if(l,r)CiidZdrdr s i=1,2 ; j€6

+
T~ rt

r

j=173-1
¢if(t,tj) is the state transition matrix satisfying

tE[tj,t )y 3 i=1,2 ; j€6

j+1
and Wi satisfies (4.37). Now,

El(zog(t) = ng(E)) (2, (€5) = n (£)7] = I (£))

where Zs(t) satisfies

2
T =A I +ZIA° + IG.G”, ;I (0)=N
S o0 S S 00 i=1 01l 01 S 00
\
te€(t, ,,t.) ; j=1,...,N
[ j-1 J) h|
£
O R RUMCHLIRY >
j-1
t, t.
i 3 2 /
+ f fco¢s(r,1) .Z GoiGoi¢S(tj,T)der]
tj_lr i=1
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(4.74¢c)

(4.744)

(4.75)

g e

T
|

W

,,
oy

1
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Ms(j) is given by
3
M (§) = [¢s(cj,tj_l>zs<tj_l>{ 05(r, e _))Codr
j-1

t. 2 t.

-1
+ [ e (e,0) T 660 6o (r,0C drdrIT T

i=1 oi

j€o
where
t. t

j
L [ cogte, t;_p)dez (e 1)f 9 (st _1)Cldt
j-1 ty-1

[
[

r 2 t.

t

i

+ f f C o (t,0) I Gloclof¢ (%,7)C dadrdr
t, i=1

j-1 J—l

2 t. t.

] J -
+z(f Cll¢lf(t,tj_l)dtwif $g(tses_)Cf de
1=1t, tiy

t.

¢1f(r,r)G (Q,T)Ciidlder] s jE€8

iiGii{¢if

+
= r
e

j=1%3-1

vy is defined by (4.70a); C_, c are defined by (4.55c-e) and

11° C22

y.3) = [y] (1) y5,(D1”
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(4.76a)

(4.76b)

(4.77)

The fast subproblem for decision maker - i is defined by the system equations

(4.28), (4.30), the cost function (4.57) and the observations

9
b

h e e A AR A A d M kbt et e 2etibibnibint il

T B




t.
- J
y6C3) = i CiqziluddT + Vi(j)
ti-1
t.
- J
2y, = [ (€2 (1) + Ciyzy (D)]dT 5 €8
tj-l

This control problem has been studied earlier in Section 2.

as ei*O, is given by

*

u;. = - BI, 1fw1f(t t.)z, f(t ) 3 tG[tj,c

j41) 3
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(4.78)

Its solution,

€0 (4.79)

where Kif satisfies the Riccati equation (4.59) and wif(t,tj) satisfies

(4.60) .
iif is the output of the filter
2 _ n % E .
€i%if = Api%ip T BigUie 5 tElE_p8) 5 3L, N
f(o) = zio
i
2pty) = 23 (6g) + MDDy G) - { €23 ()]
i-1
and
3
M () = [¢if(tj,tj_1)wi[ {g(raty y)C i dr
t.
J-l
t, £
j -1
+{ IPICR LA lcuf $ g (£, 1)C] drde ]V,

j-1

P (4.80)

(4.81)

A near-optimality result, analogous to Proposition 4.2, can be established in

this case also by following the same lines:

S

R
S

Rl
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i Proposition 4.3:

* * *
. 1) vi(t,ay) = vy (thay) +u (1) + 0(lel) 5 ¥e€(0,T); i=1,2
L- ;s * % * % 2 *
1) J(vysvy) = Js(vls,vzs) + E [(JipCage) + T ex(Q, W)l + oChehd

i=1
o

5. CONCLUSIONS

Through an informal discussion of a series of problems,we have attempted
to analyze the interaction between model simplification and strategy design in
a multimodel context. The objective was to achieve a clear understanding of the
interrelationships between the structural features of large scale systems, like
time-scales and weak-coupling, and strategy design under certain quasi-classical
information patterns.

Weakly-connected subsystems with continuous equilibria exhibit a
two-time-scale behavior. The slow system-wide behavior is caused by the
interconnections and is described by an aggregate 'core' which appears as a
slow subsystem in the singular perturbation form of the model. The fast
phenomena which consist of 'local' transients within each subsystem are weakly-
coupled. The control design problem for such systems can be approached via
the multimodeling concept. Each decision maker's control can be divided into
a slow part, which contributes to the control of the core, and a fast part
controlling his own fast subsystem. Hence, the slow subproblem is a multiple
decision maker problem under the same solution concept (Nash, team, etc.) as

the full problem, while the fast subproblems are decoupled stochastic control
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problems. Since each decision maker need not know the parameters associated
with the fast subproblem of other decision makers, the multimodel solution
is robust with respect to modeling errors; a very desirable feature in large
scale system design.

Our results serve to demonstrate the richness in the modeling
structure with multiparameter singular perturbations in the context of
multimodeling problems. In each case, the limit of seemingly complex
integro~differential equations associated with the optimal solution has a
nice appealing structure when interpreted as a multimodel solution. Thus

the multimodeling approach using singular perturbations is in some sense

'robust' with respect to a class of solution concepts and information patterns.
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